The hyperbolic class of quadratic time-frequency representations. I. Constant-Q warping, the hyperbolic paradigm, properties, and members
نویسندگان
چکیده
The time-frequency (TF) version of the wavelet transform and the “affine” quadraticlbilinear TF representations can be used for a TF analysis with constant-Q characteristic. This paper considers a new approach to constant-Q TF analysis. A specific TF warping transform is applied to Cohen’s class of quadratic TF representations, which results in a new class of quadratic TF representations with constant-Q characteristic. The new class is related to a “hyperbolic TF geometry” and is thus called the hyperbolic class (HC). Two prominent TF representations previously considered in the literature, the Bertrand Po distribution and the Altes-Marinovic Q-distribution, are members of the new HC. We show that any hyperbolic TF representation is related to both the wideband ambiguity function and a “hyperbolic ambiguity function.” It is also shown that the HC is the class of all quadratic TF representations which are invariant to “hyperbolic time-shifts” and TF scalings, operations which are important in the analysis of Doppler-invariant signals and self-similar random processes. The paper discusses the definition of the HC via constant-Q warping, some signal-theoretic fundamentals of the “hyperbolic TF geometry,’’ and the description of the HC by 2-D kernel functions. Several members of the HC are considered, and a list of desirable properties of hyperbolic TF representations is given together with the associated kernel constraints.
منابع مشابه
The Hyperbolic Class of Quadratic Time-Frequency Representations-Part II: Subclasses, Intersection w - Signal Processing, IEEE Transactions on
Part I of this paper introduced the hyperbolic class (HC) of quadratic/bilinear time-frequency representations (QTFR’s) as a new framework for constant-Q time-frequency analysis. The present Part II defines and studies the following four subclasses of the HC: • The localized-kernel subclass of the HC is related to a timefrequency concentration property of QTFR’s. It is analogous to the localize...
متن کاملThe hyperbolic class of quadratic time-frequency representations. II. Subclasses, intersection with the affine and power classes, regularity, and unitarity
Part I of this paper introduced the hyperbolic class (HC) of quadratic/bilinear time-frequency representations (QTFR’s) as a new framework for constant-Q time-frequency analysis. The present Part II defines and studies the following four subclasses of the HC: • The localized-kernel subclass of the HC is related to a timefrequency concentration property of QTFR’s. It is analogous to the localize...
متن کاملStability analysis and feedback control of T-S fuzzy hyperbolic delay model for a class of nonlinear systems with time-varying delay
In this paper, a new T-S fuzzy hyperbolic delay model for a class of nonlinear systems with time-varying delay, is presented to address the problems of stability analysis and feedback control. Fuzzy controller is designed based on the parallel distributed compensation (PDC), and with a new Lyapunov function, delay dependent asymptotic stability conditions of the closed-loop system are derived v...
متن کاملAn Extension of Poincare Model of Hyperbolic Geometry with Gyrovector Space Approach
The aim of this paper is to show the importance of analytic hyperbolic geometry introduced in [9]. In [1], Ungar and Chen showed that the algebra of the group $SL(2,mathbb C)$ naturally leads to the notion of gyrogroups and gyrovector spaces for dealing with the Lorentz group and its underlying hyperbolic geometry. They defined the Chen addition and then Chen model of hyperbolic geomet...
متن کاملOptical properties of a semi-infinite medium consist of graphene based hyperbolic meta-materials with tilted optical axis
In this paper, the optical properties of a semi-infinite medium composed of graphen-based hyperbolic meta-materials with the optical axis were tilted with respect to its boundary with air, by using the Maxwell equations; then the homogeneous effective medium approximation method was studied. The results showed that the orientation of the structure layers (geometric induced anisotropy) affec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Signal Processing
دوره 41 شماره
صفحات -
تاریخ انتشار 1993